pandaspgs.file_operation
read_scoring_file
read_scoring_file(
pgs_id: str = None, grch: str = "GRCh37"
) -> DataFrame
Download a scoring file and convert it to a DataFrame. The directory of the downloaded file is $HOME/pandaspgs_home.
Parameters: |
|
---|
Returns: |
|
---|
from pandaspgs import read_scoring_file
df = read_scoring_file(pgs_id='PGS000737')
write_csv
write_csv(
path: str,
o: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
) -> None
Create a directory and write the attributes of pandasPGS objects to the corresponding CSV files.
Parameters: |
|
---|
Returns: |
|
---|
from pandaspgs import *
import os
home_path = os.path.expanduser('~') + os.sep + 'pandaspgs_home'
ancestry = get_ancestry_categories()
write_csv(home_path + os.sep + 'ancestry', ancestry)
write_xlsx
write_xlsx(
path: str,
o: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
) -> None
Create a directory and write the attributes of pandasPGS objects to the corresponding EXCEL files.
Parameters: |
|
---|
Returns: |
|
---|
from pandaspgs import *
import os
home_path = os.path.expanduser('~') + os.sep + 'pandaspgs_home'
ancestry = get_ancestry_categories()
write_xlsx(home_path + os.sep + 'ancestry', ancestry)