pandaspgs.set_operation
bind
bind(
a: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
b: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
) -> (
AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory
)
Binds together PGS objects of the same object. Note that bind() preserves duplicates whereas union() does not.
Parameters: |
|
---|
Returns: |
|
---|
from pandaspgs.get_cohort import get_cohorts
from pandaspgs.set_operation import bind
a = get_cohorts(cohort_symbol='100-plus')
b = get_cohorts(cohort_symbol='23andMe')
c = bind(a,b)
intersect
intersect(
a: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
b: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
) -> (
AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory
)
Returns the data common to both A and B, with no repetitions
Parameters: |
|
---|
Returns: |
|
---|
from pandaspgs.get_cohort import get_cohorts
from pandaspgs.set_operation import intersect
a = get_cohorts(cohort_symbol='100-plus')
b = get_cohorts(cohort_symbol='23andMe')
c = intersect(a,b)
set_diff
set_diff(
a: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
b: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
) -> (
AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory
)
returns the data in A that is not in B, with no repetitions
Parameters: |
|
---|
Returns: |
|
---|
from pandaspgs.get_cohort import get_cohorts
from pandaspgs.set_operation import set_diff
a = get_cohorts(cohort_symbol='23andMe')
b = get_cohorts(cohort_symbol='23andMe')
c = set_diff(a,b)
set_equal
set_equal(
a: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
b: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
) -> bool
Check if the raw data of a and b are equal
Parameters: |
|
---|
Returns: |
|
---|
from pandaspgs.get_cohort import get_cohorts
from pandaspgs.set_operation import set_equal
a = get_cohorts(cohort_symbol='100-plus')
b = get_cohorts(cohort_symbol='23andMe')
c = set_equal(a,b)
set_xor
set_xor(
a: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
b: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
) -> (
AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory
)
returns the data of A and B that are not in their intersection (the symmetric difference), with no repetitions
Parameters: |
|
---|
Returns: |
|
---|
from pandaspgs.get_cohort import get_cohorts
from pandaspgs.set_operation import set_xor
a = get_cohorts(cohort_symbol='100-plus')
b = get_cohorts(cohort_symbol='23andMe')
c = set_xor(a,b)
union
union(
a: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
b: AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory,
) -> (
AncestryCategory
| Cohort
| PerformanceMetric
| Publication
| Release
| SampleSet
| Score
| Trait
| TraitCategory
)
returns the combined data from A and B with no repetitions
Parameters: |
|
---|
Returns: |
|
---|
from pandaspgs.get_cohort import get_cohorts
from pandaspgs.set_operation import union
a = get_cohorts(cohort_symbol='100-plus')
b = get_cohorts(cohort_symbol='23andMe')
c = union(a,b)