pandaspgs.set_operation
bind
bind(
    a: AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory,
    b: AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory,
) -> (
    AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory
)
Binds together PGS objects of the same object. Note that bind() preserves duplicates whereas union() does not.
| Parameters: | 
 | 
|---|
| Returns: | 
 | 
|---|
from pandaspgs.get_cohort import get_cohorts
from pandaspgs.set_operation import bind
a = get_cohorts(cohort_symbol='100-plus')
b = get_cohorts(cohort_symbol='23andMe')
c = bind(a,b)
intersect
intersect(
    a: AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory,
    b: AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory,
) -> (
    AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory
)
Returns the data common to both A and B, with no repetitions
| Parameters: | 
 | 
|---|
| Returns: | 
 | 
|---|
from pandaspgs.get_cohort import get_cohorts
from pandaspgs.set_operation import intersect
a = get_cohorts(cohort_symbol='100-plus')
b = get_cohorts(cohort_symbol='23andMe')
c = intersect(a,b)
set_diff
set_diff(
    a: AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory,
    b: AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory,
) -> (
    AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory
)
returns the data in A that is not in B, with no repetitions
| Parameters: | 
 | 
|---|
| Returns: | 
 | 
|---|
from pandaspgs.get_cohort import get_cohorts
from pandaspgs.set_operation import set_diff
a = get_cohorts(cohort_symbol='23andMe')
b = get_cohorts(cohort_symbol='23andMe')
c = set_diff(a,b)
set_equal
set_equal(
    a: AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory,
    b: AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory,
) -> bool
Check if the raw data of a and b are equal
| Parameters: | 
 | 
|---|
| Returns: | 
 | 
|---|
from pandaspgs.get_cohort import get_cohorts
from pandaspgs.set_operation import set_equal
a = get_cohorts(cohort_symbol='100-plus')
b = get_cohorts(cohort_symbol='23andMe')
c = set_equal(a,b)
set_xor
set_xor(
    a: AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory,
    b: AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory,
) -> (
    AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory
)
returns the data of A and B that are not in their intersection (the symmetric difference), with no repetitions
| Parameters: | 
 | 
|---|
| Returns: | 
 | 
|---|
from pandaspgs.get_cohort import get_cohorts
from pandaspgs.set_operation import set_xor
a = get_cohorts(cohort_symbol='100-plus')
b = get_cohorts(cohort_symbol='23andMe')
c = set_xor(a,b)
union
union(
    a: AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory,
    b: AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory,
) -> (
    AncestryCategory
    | Cohort
    | PerformanceMetric
    | Publication
    | Release
    | SampleSet
    | Score
    | Trait
    | TraitCategory
)
returns the combined data from A and B with no repetitions
| Parameters: | 
 | 
|---|
| Returns: | 
 | 
|---|
from pandaspgs.get_cohort import get_cohorts
from pandaspgs.set_operation import union
a = get_cohorts(cohort_symbol='100-plus')
b = get_cohorts(cohort_symbol='23andMe')
c = union(a,b)